最具争议性研究:大模型中间层输出可 100% 反推原始输入
最具争议性研究:大模型中间层输出可 100% 反推原始输入Transformer 语言模型具有单射性,隐藏状态可无损重构输入信息。
Transformer 语言模型具有单射性,隐藏状态可无损重构输入信息。
当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。
近期,扩散语言模型备受瞩目,提供了一种不同于自回归模型的文本生成解决方案。为使模型能够在生成过程中持续修正与优化中间结果,西湖大学 MAPLE 实验室齐国君教授团队成功训练了具有「再掩码」能力的扩散语言模型(Remasking-enabled Diffusion Language Model, RemeDi 9B)。
近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。
扩散语言模型(Diffusion Language Models,DLM)一直以来都令研究者颇感兴趣,因为与必须按从左到右顺序生成的自回归模型(Autoregressive, AR)不同,DLM 能实现并行生成,这在理论上可以实现更快的生成速度,也能让模型基于前后文更好地理解生成语境。
近日,蚂蚁集团正式开源业界首个高性能扩散语言模型(Diffusion Large Language Model,dLLM)推理框架 dInfer。
近年来,以强化学习为核心的训练方法显著提升了大语言模型(Large Language Models, LLMs)的推理能力与对齐性能,尤其在理解人类意图、遵循用户指令以及增强推理能力方面效果突出。尽管现有综述对强化学习增强型 LLMs 进行了概述,但其涵盖范围较为有限,未能全面总结强化学习在 LLMs 全生命周期中的作用机制。
苹果研究人员发现,在大模型中,极少量的参数,即便只有0.01%,仍可能包含数十万权重,他们将这一发现称为「超级权重」。超级权重点透了大模型「命门」,使大模型走出「炼丹玄学」。
近年来,扩散大语言模型(Diffusion Large Language Models, dLLMs)正迅速崭露头角,成为文本生成领域的一股新势力。与传统自回归(Autoregressive, AR)模型从左到右逐字生成不同,dLLM 依托迭代去噪的生成机制,不仅能够一次性生成多个 token,还能在对话、推理、创作等任务中展现出独特的优势。
《Physics of Language Models(语言模型物理学)》,正是将AI研究带入“物理学范式”的项目,由Meta FAIR研究院的朱泽园概念化发起,并统筹设计。